- Distriet -

C and C++: vulnerabllities, exploits

and countermeasures

Yves Younan
DistriNet, Department of Computer Science
Katholieke Universiteit Leuven
Belgium
Yves.Younan@cs.kuleuven.ac.be

mailto:Yves.Younan@cs.kuleuven.ac.be

- Distriet -

Introduction

» C/C++ programs: some vulnerabilities exist which
could allow code injection attacks

» Code injection attacks allow an attacker to execute

L

foreign code with the privileges of the vulnerable
program

» Maijor problem for programs written in C/C++

» Focus will be on:
» lllustration of code injection attacks
> Countermeasures for these attacks (B)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 9 1135 "‘-#‘,’,}

Research Group

| ecture overview

» Memory management in C/C++
» \ulnerabilities

» Countermeasures

» Conclusion

;"f N

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 3 1135 “*-;',1:4’

- Distriet -

Memory management in C/C++

» Memory is allocated in multiple ways in C/C++:
» Automatic (local variables in a function)
» Static (global variables)
» Dynamic (malloc or new)

» Programmer is responsible for

» Correct allocation and dealocation in the case of
dynamic memory

» Appropriate use of the allocated memory
= Bounds checks, type checks

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 4 1135 X

- Distriet -

Memory management in C/C++

» Memory management is very error prone

» Typical bugs:
» Writing past the bounds of the allocated memory
» Dangling pointers: pointers to deallocated memory
» Double frees: deallocating memory twice
» Memory leaks: never deallocating memory

» For efficiency reasons, C/C++ compilers don't
detect these bugs at run-time:

» C standard states behavior of such programs is

VAN
V4 ﬁ ®
< %

Yves Younan U n d efl n edi C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 5 /135 "‘-é‘,’,}

- Distrillet -

Research Group

Process memory layout

Arguments/Environment

Stack

Unused and
Shared Memory

Heap

Static & Global Data

Program code

N\

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 g /135

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities
> Integer errors

» Countermeasures
» Conclusion

N\

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 7 1135

- Distriet -

Code injection attacks

» To exploit a vulnerability and execute a code
Injection attack, an attacker must:

» Find a bug that can allow an attacker to overwrite
Interesting memory locations

» Find such an interesting memory location
» Copy target code in binary form into the memory of a
program
= Can be done easily, by giving it as input to the program

» Use the vulnerability to modify the location so that the
program will execute the injected code &)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 g /135 “-«",’,.?

- DistiNet -

Interesting memory locations

for attackers

» Stored code addresses: modified -> code can be
executed when the program loads them into the IP

» Return address: address where the execution must
resume when a function ends

» Global Offset Table; addresses here are used to
execute dynamically loaded functions

» Virtual function table: addresses are used to know
which method to execute (dynamic binding in C++)

» Dtors functions: called when programs exit

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 9 /135 “-;‘,f}

- Distriet -

Interesting memory locations

» Function pointers: modified -> when called, the
Injected code is executed

» Data pointers: modified -> indirect pointer
overwrites

» First the pointer is made to point to an interesting
ocation, when it is dereferenced for writing the
ocation is overwritten

» Attackers can overwrite many locations to perform
an attack

AN
‘! %)
3 %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 10 /135 “-«",’,.?

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (B)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 11 1135

\ pt\l Ilf\"f\lﬁm ﬂﬂﬂﬂﬂﬂﬂﬂ

- DishiNet -

Buffer overflows: impact

» Code red worm: estimated loss world-wide: $ 2.62
billion
» Sasser worm: shut down X-ray machines at a

swedish hospital and caused Delta airlines to
cancel several transatlantic flights

» Zotob worm: crashed the DHS' US-VISIT program
computers, causing long lines at major
International airports

>AII three worms used stack based buffer overflows &

Yves You C and C++: vulnerabilties, exploits and counter February 2200, 2010 1 /135 N/

- Distriet -

Buffer overflows: numbers

» NIST national vulnerability database (jan-oct
2008).

» 486 buffer overflow vulnerabilities (10% of total
vulnerabilities reported)

» 347 of these have a high severity rating

» These buffer overflow vulnerabilities make up 15% of
the vulnerabilities with high severity

AN
V4 ﬁ ®
4 %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 13 /135 “-«",’,.?

- Distriet -
Buffer overflows: what?

» Write beyond the bounds of an array
» Overwrite information stored behind the array

» Arrays can be accessed through an index or
through a pointer to the array

» Both can cause an overflow

» Java: not vulnerable because it has no pointer
arithmetic and does bounds checking on array
indexing

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 14 1135 N

- DistiNet -

Buffer overflows: how?

» How do buffer overflows occur?
» By using an unsafe copying function (e.g. strcpy)

» By looping over an array using an index which may be
too high

» Through integer errors

» How can they be prevented?

» Using copy functions which allow the programmer to
specify the maximum size to copy (e.g. strncpy)

» Checking index values
. Better checks on integers ()

February 22nd, 2010 15 /135 W4

- DistriNet -

Research Group

Buffer overflows: example

volid function (char *input) {
char str[80];

strcpy(str, input);

}

int mailn(int argc, char **argv)
{

function (argv[l]);

}

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 16 /135 ‘\.;::";

- Distrillet ' »

Research Group

Shellcode

» Small program in machine code representation
> Injected into the address space of the process

int main () {

printf ("You win\n") ;
ex1it (0)
}

static char shellcode[] =
"\x6a\x09\x83\x04\x24\x01\x68\x77"
"\x69\x6e\x21\x68\x79\x6f\x75\x20"
"\x31\xdb\xb3\x01\x89\xel\x31\xd2"

"\xb2\x09\x31\xc0\xb0\x04\xcd\x80" (B)
Cand C++: vulhér*ilygss@ik\aﬁé @@r&eﬁb O \ X O 1 \ X@b@ﬂ@%@8(@) " s 17 1135 N4

Y V V V VVVVV V

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (B)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 18 1135

\ pt\l Ilf\"f\lﬁm ﬂﬂﬂﬂﬂﬂﬂﬂ

- DistriNet -

Research Group

Stack-based buffer overflows

» Stack is used at run time to manage the use of
functions:

» For every function call, a new record is created

= (Contains return address: where execution should resume
when the function is done

= Arguments passed to the function
= [ocal variables

> |f an attacker can overflow a local variable he can
find interesting locations nearby

VAN
V4 ﬁ ®
< %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 19 /135 “-«",’,.?

- Distrillet ' »

Research Group

Stack-based buffer overflows

» Old unix login vulnerability
» int login () {
" char user[8], hash[8], pw[8];
" printf ("login:"); gets(user);
= lookup (user, hash) ;
" printf ("password:"); gets (pw) ;
" 1f (equal (hash, hashpw(pw)))

= return OK;
mco]lse
u return INVALID;

,\!’ -.: "s_
Fy ﬁ‘;—

Yves Yo%an } C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 o0 /135

» DistriNet -

esearch Group

Stack-based buffer overflows

Other stack frames

login:
IP :
sl char user[8], hash[8], pw[8]; | FP Return address login
printf(“username:”); === Saved frame pointer login
gets(user); user
lookup(user,hash);
printf(“password:”);
gets(pw); B
If (equal(hash,hashpw(pw)))
return OK; SP pW
else — >
return INVALID;

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

» DistriNet -

esearch Group

Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
P printf(“fusername:”);
* gets(user);
lookup(user,hash);
printf(“password:”);
gets(pw);
If (equal(hash,hashpw(pw)))
return OK;
else

return INVALID:;

FP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user

hash

pw

» DistriNet -

esearch Group

Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);

P gets(user);

* lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user

hash

pw

» DistriNet -

esearch Group

Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);

P gets(user);

* lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user

hash

pw

+ DigtriNet -

esearch Group

Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);
gets(user);
lookup(user,hash);

P printf(“password:”);

ml=- gets(pw);

If (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user

hash

- Distriet -

Stack-based buffer overflows

» Attacker can specify a password longer than 8
characters

» Will overwrite the hashed password

> Attacker enters:
> AAAAAAAABBBBBBBB
» \Where BBBBBBBB = hashpw(AAAAAAAA)

» Login to any user account without knowing the
password

» Called a non-control data attack

February 22nd, 2010 9 /135 Nt

Research Group

Stack-based buffer overflows

login:
char user[8], hash[8], pw[8];
printf(“fusername:”);
gets(user);
lookup(user,hash);

P printf(“password:”);

ml=- gets(pw);

If (equal(hash,hashpw(pw)))
return OK;

else

return INVALID:;

FP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Other stack frames

Return address login

Saved frame pointer login

user

» DistriNet -

esearch Group

Stack-based buffer overflows

tac

f0: Other stack frames

— = ep Return address fO

call f1 Saved frame pointer fO

v

Local variables fO
SP

Y

f1:

buffer(]
overflow()

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

» Distrilet -

esearch Group

Stack-based buffer overflows

tac

f0: Other stack frames

Return address fO

IP* call f1 ::> Saved frame pointer fO

Local variables fO

L Arguments f1

buffer(] .

overflow()

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

> Di
R

shrilet -

esearch Group

IP

Yves Younan

Stack-based buffer overflows

fO:

call f1

f1:

buffer(]
overflow()

tac

Other stack frames

Return address fO

Saved frame pointer fO

Local variables fO

Arguments f1

FP

::>

SP

*

C and C++: vulnerabilities, exploits and countermeasures

Return address f1

Saved frame pointer f1

Buffer

Cpe WY N
« DistriNet -

Research Group

Stack-based buffer overflows

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

f1:
P buffer(]
mml> | overflow() =5

Arguments f1

SP)
— =

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Research Group

Stack-based buffer overflows

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

SP

f1:

buffer(]
overflow()

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Research Group

Stack-based buffer overflows

> Exercises

» From Gera’s insecure programming page
= http://community.corest.com/~gera/lnsecureProgram
ming/
» For the following programs:
= Assume Linux on Intel 32-bit
= Draw the stack layout right after gets() has executed

= Give the input which will make the program print out “you
win!”

;"f N

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 33 /135 “*-;',1:4’

http://community.corest.com/~gera/InsecureProgramming/
http://community.corest.com/~gera/InsecureProgramming/

- Distrillet -

Research Group

Stack-based buffer overflows

» int main () {
> int cookie;
> char buf[80];

> printf ("b: %$x c: %$x\n", &buf,
&cookie) ;

> gets (buf) ;

> 1f (cookie == 0x41424344)
> printf ("you win!\n"); {@
Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 34 1135

\ 4

1

- Distrillet ' »

Research Group

Stack-based buffer overflows

Stack

Return address

FP _
= > Frame pointer
cookie
P
* buf

SP

Y

,\!’ -.: "s_
Fy ﬁ‘;—

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 35 /135

171 UU

=" DistriNet -

Research Group

Stack-based buffer overflows

Stack
main: £p Return address
cookie = > Frame pointer
buf[80]
printf()
P gets()

» perl -e 'print "A"x80; print "DCBA" | ./s1

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 36 /135 "‘-g‘;:&’

- Distrillet -

Research Group

Stack-based buffer overflows

» int main () {
> int cookie;
> char buf[80];

> printf ("b: %$x c: %$x\n", &buf,
&cookie) ;

> gets (buf) ;

>)

Yves Younan . C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 37 1135
hi1iFf 1< at+ 1oacatri1on OvyhfFFFFrad TN mMmemn vy

- Distrillet ' »

Research Group

Stack-based buffer overflows

Stack
main: . Fp Return address
COoKle ::> Frame pointer
buf[80] cookie
= printf()
== | gets() buf

,\!’ -.: "s_
Fy ﬁ‘;—

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 38 /135

- Distrillet -

Research Group

Stack-based buffer overflows

>#define RET Oxbffffced

»1int main () {

> char buf[93];

> int ret;

> memset (buf, '\x90', 92);

> memcpy.(buf, shellcode,
strlen (shi€ellcode));

> * (long *)&buf[88] = RET;
> buf[92] = 0;

> printf (buf) ;

> }

N\

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 39 /135

- Dighitet -

Stack-based buffer overflows

) Stack
main:
cookie FP
buf[80] ":
printf()
P gets()
* Oxbffffce4

N
{ B

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 40 /135 "‘-4";:*’

- Distriet -

Finding inserted code

» Generally (on kernels < 2.6) the stack will start at a static
address

» Finding shell code means running the program with a
fixed set of arguments/fixed environment

> This will result in the same address

» Not very precise, small change can result in different
location of code

» Not mandatory to put shellcode in buffer used to overflow
» Pass as environment variable

VAN
V4 ﬁ ®
< %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 411135 “-«",’,.?

- Distrillet -

Research Group

Controlling the environment

Passing shellcode as
environment variable:

Stack start - 4 null bytes

- strlen(program name) -

- null byte (program name)
- strlen(shellcode)

OXBFFFFFFF - 4

- strlen(program name) -
-1

- strlen(shellcode)

Stack start:
OxBFFFFFFF

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

0,0,0,0

Program name

Env var n

Env var n-1

Env var 0

Argn

Arg n-1

Arg 0

High addr

Low addr

iy
i"’. 5

F & »
yé‘i

February 22nd,2010 49 /135 Nt

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (B)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 43 1135

\ pt\l Ilf\"f\lﬁm ﬂﬂﬂﬂﬂﬂﬂﬂ

- Distriet -

Indirect Pointer Overwriting

» Overwrite a target memory location by overwriting
a data pointer

» An attackers makes the data pointer point to the target
location

» When the pointer is dereferenced for writing, the target
location is overwritten

> |f the attacker can specify the value of to write, he can
overwrite arbitrary memory locations with arbitrary
values

VAN
4 ﬁ ®
- %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 44 1135 “-«",’,.?

» D
R

striet -

esearch Group

Yves Younan

Indirect Pointer Overwriting

fO:
FP

v

call f1

SP

Y

f1:

ptr = &data;
buffer(]

overflow();

*ptr = value;

data I

C and C++: vulnerabilities, exploits and countermeasures

tac

Other stack frames

Return address fO

Saved frame pointer fO

Local variables fO

+ DigtriNet -

esearch Group

Indirect Pointer Overwriting

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

IP
. f1: Arguments f1
ptr = &data;
buffer(] £p Return address f1
overflow(); ::> Saved frame pointer f1

*ptr = value; Pointer

data H SP*

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Buffer

=" Distrillet -

Research Group

Indirect Pointer Overwriting

fO:

call f1

f1:
ptr = &data;
buffer(]

mel> | overflow();

*ptr = value;

Yves Younan

data I

tac

Other stack frames

Return address fO

Saved frame pointer fO

Local variables fO

Arguments f1

FP

Return address f1

V]

SP

*

C and C++: vulnerabilities, exploits and countermeasures

Saved frame pointer f1

R
» DistriNet -

Research Group

Indirect Pointer Overwriting

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO

Local variables fO

f1: Arguments f1
ptr = &data;
buffer(] £p >
P overflow(); ::> Saved frame pointer f1

sl | *ptr = value;
SP ”
data I *

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

- Distrillet -

Research Group

Indirect Pointer Overwriting

tac
0: Other stack frames
£p Return address fO
call f1 m=>>| Saved frame pointer O

Local variables fO
SP

Y

f1:

ptr = &data;
buffer(]

overflow();

*ptr = value;

data I

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

- Distrillet ' »

Research Group

Indirect Pointer Overwriting

»static unsigned int a = 0;

»int main (int argc, char **argv)

> int *b = &a;

> char buf[80];

> printf ("buf: %08x\n", &buf);

> gets (buf) ;

> *b = strtoul (argv[1l], 0, 16);

>) I ®)
Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 50 /135 i

N1 L oy N 1 ~ N AN

- Distrillet ' »

Research Group

Indirect Pointer Overwriting

main:
b=&a;
P buf[80]

m= | gets();

*b = argv[1];

Stack

Return address

Saved frame pointer
b

FP

v

buf

'

AN
Fy ﬁ V;_

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 51 /135

- DistriNet -

Research Group

Indirect Pointer Overwriting

»#define RET Oxbffff9e4+88
»1int main () {

» char buf[84];

» 1int ret;

» memset (buf, '\x90', 84);

» memcpy (buf, shellcode,
strlen (shellcode)) ;

» *(long *)é&buffer[80] = RET;
» printf (buffer);

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 59 /135

- DishiNel -

Research Group

Indirect Pointer Overwriting

main:
b=&a;
buf[80]

gets();
*b = argv[l];

Stack

I= Return address

FP

::> Saved frame pointer

j‘f::"".
@ %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 53 /135 "‘-g‘;:&’

- Dighilel -

Research Group

Indirect Pointer Overwriting

main:
b=&a;
buf[80]

gets();
*b = argv[l];

Stack

IP Saved frame pointer

N
()

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 54 /135 "‘-4‘;:4’

Research Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
= Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (B)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 55 /135 “*-;',1:4’

\ nt\l Ilf\"f\lﬁm ﬂﬂﬂﬂﬂﬂﬂﬂ

- Distriet -

Heap-based buffer overflows

» Heap contains dynamically allocated memory

» Managed via malloc() and free() functions of the
memory allocation library

» A part of heap memory that has been processed by
malloc is called a chunk

» No return addresses: attackers must overwrite data
pointers or function pointers

» Most memory allocators save their memory
management information in-band

. Overflows can overwrlte ‘management information

Yves Cand C++ rabilities, exploits a untermea February 22nd, 2010

&
! %)
< %
3 y

56 /135 Wi

- DistriNet -

Research Group

Heap management in dimalloc

» Used chunk

Chunk1

Size of prev. chunk
Size of chunkl

User data

,\!’ -.: "s_
Fy ﬁ‘;—

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 57 /135

- DistriNet -

Research Group

Heap management in dimalloc

» Free chunk: doubly linked list of free chunks

Chunk1

Size of prev. chunk
Size of chunkl
Forward pointer

Backward pointer

Old user data

VAN
V4 ﬁ ®
< %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 58 /135 “-«",’,.?

> DistriNlet -

Research Group

Heap management in dimalloc

» Removing a chunk from the doubly linked list of

free chunks:
#define unlink (P, BK, FD) {

BRK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD; }
> This Is:
P->fd->bk = P->bk
P->bk->fd = P->fd

,\!’ -.: "s_
Fy ﬁ‘;—

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 59 /135

- DistriNet -

Research Group

Heap management in dimalloc

Chunk1

Size of prev. chunk

Chunk?2

Chunk3

Size of chunkl

Size of prev. chunk)

Forward pointer

Size of chunk2

T Size of prev. chunk

Backward pointer

Forward pointer

Size of chunk3

Old user data

Backward pointer

Forward pointer

Old user data

Backward pointer

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Old user data

AN
V4 ﬁ ®
4 %

February 22nd, 2010 60 /135 N

» DistriNet -

esearch Group

Heap management in dimalloc

Chunkl Chunk3
Size of prev. chunk (Size of prev. chunk
Size of chunkl Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data

7,
A
‘!ﬁ‘l

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 g1 /135 Wif

» DistriNet -

esearch Group

Heap management in dimalloc

Chunkl Chunk3
Size of prev. chunk Size of prev. chunk
Size of chunkl Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data

7,
A
‘!ﬁ‘l

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 g2 /135 Wjif

» DistriNet -

esearch Group

Heap management in dimalloc

Chunkl Chunk3
Size of prev. chunk Size of prev. chunk
Size of chunkl Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data

7,
A
‘!ﬁ‘l

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 g3 /135 Wjif

+ DigtriNet -

esearch Group

Heap-based buffer overflows

Chunk1
Size of prev. chunk
Size of chunkl
User data
Chunk?2

Size of chunkl
Size of chunk?2
Forward pointer
Backward pointer

Old user data

AN
4 é ®
4 %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 64 /135 “-;‘,f}

®

- DigfriNet

Research Group

Heap-based buffer overflows

Chunk1

Size of prev. chunk
Size of chunkl

— Return address

Chunk?2

call f1

Old user data

N
{ B

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 65 /135 "‘-4_‘,;::’

- DigfriNet

Research Group

®

Heap-based buffer overflows

Chunk1l > After unlink

Size of prev. chunk
Size of chunkl

_

Chunk?2

call f1

Old user data

N
{ B

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 66 /135 Wi

- Distriet -
Dangling

» Pointers to memory t
» Dereferencing Is unc

pointer references

nat is no longer allocated

necked in C

» Generally leads to crashes

» Can be used for code injection attacks when
memory is deallocated twice (double free)

» Double frees can be used to change the memory
management information of a chunk

AN
V4 ﬁ ®
4 %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 67 / 135 “-«",’,.?

- DistriNet -

Research Group

Double free

Chunk?2 Chunk3
Size of prev. chunk) T Size of prev. chunk
Size of chunk2 Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data

VAN
4 ﬁ ®
- %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 68 / 135 “-«",’,.?

- DistriNet -

Research Group

Double free

Chunk?2 Chunk3
Size of prev. chunk) T Size of prev. chunk
Size of chunk2 Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data

VAN
4 ﬁ ®
- %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 69 / 135 “-«",’,.?

- DistriNet -

Research Group

Double free

Chunk?2

Size of prev. chunk

Chunk?2

Chunk3

Size of chunk2

Size of prev. chunk l

Forward pointer

Size of chunk2

T Size of prev. chunk

Backward pointer

Forward pointer

Size of chunk3

Old user data

Backward pointer

Forward pointer

Old user data

Backward pointer

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

Old user data

AN
,! ﬁ h
< %

February 22nd, 2010 701135 N4

- DistriNet -

Research Group

Double free

Chunk?2 Chunk3
3 Size of prev. chunk) Size of prev. chunk
Size of chunk2 Size of chunk3
Forward pointer Forward pointer
Backward pointer Backward pointer
Old user data Old user data

VAN
4 ﬁ ®
- %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 71 1135 “-«",’,.?

- DistriNet -

Research Group

Double free

» Unlink: chunk stays linked because it points to

itself
Chunk?2

Size of prev. chunk
Size of chunk?2
Forward pointer

Backward pointer

w

Old user data

VAN
4 ﬁ ®
- %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 79 1135 “-«",’,.?

e U ST 18
I\ o | * 18
» DistriNet -

Research Group

Double free

> |f unlinked to reallocate: attackers can now write to

the user data part
B Chunk?2

’| Size of prev. chunk
Size of chunk?2

j‘f::"".
@ %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 73 1135 "‘-g‘;:&’

Cpe WY N
« DistriNet -

Research Group

Double free

> |t Is still linked In the list too, so it can be unlinked
again
Chunk?2

Size of prev. chunk Return address
Size of chunk2

call f1

;'"t’::"\.
g @ %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 74 1135 "*-;f;f

- Dighilel -

Research Group

Double free

» After second unlink

Chunk?2

Size of chunk2

call f1

N
()

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 75 1135 "‘-4‘;:4’

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks

» Buffer overflows
= Stack-based buffer overflows
= |ndirect Pointer Overwriting
» Heap-based buffer overflows and double free
= Qverflows in other segments

» Format string vulnerabilities
> Integer errors (B)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 76 /135

\ pt\l Ilf\"f\lﬁm ﬂﬂﬂﬂﬂﬂﬂﬂ

- Distriet -

Overflows in the data/bss

segments

» Data segment contains global or static compile-
time initialized data

» Bss contains global or static uninitialized data

» Overflows in these segments can overwrite:

» Function and data pointers stored in the same
segment

» Data in other segments

VAN
V4 ﬁ ®
< %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 77 1135 N3¢

- Distrilet -

Overflows in the data/bss

segments

» ctors: pointers to functions to —
execute at program start Ctors
» dtors: pointers to functions to Dtors
execute at program finish o

» GOT: global offset table: used
T : BSS

for dynamic linking: pointers to

absolute addresses

Heap

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 78 /135

- Diskitet"

Overflow in the data segment

»char buf[256]={1};

»int main (int argc,char **argv)
» strcpy(buf,argv[l]);
>)

,\{’ ..: "s_
\ é‘;‘

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 79 /135

> DistriNet -

Research Group

Overflow in the data segment

Data buf[256]
Ctors
Dtors 0x00000000
GOT
BSS
Uiz Mol C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 80 /135 lﬁ

- DistriNet -

Research Group

Overflow in the data section

» int main (int argc, char **argv)

» char buffer[476];
>~cbar *execargv([3] = { "./abo7", buffer, NULL

4

» char *env[2] = { shellcode, NULL };
» int ret;

» ret = OxBFFFFFFF.- 4 - strlen (execargv[0]) -
1 - strlen (shellcode) ;

» memset (buffer, '\x90', 476);
» *(long *)&buffer[472] = ret;
» execve (execargv[0],execargv,env) ;

>}

,\!’ -.: "s_
Fy ﬁ‘;—

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 g1 /135

- Distritlet -

Research Group

Overflow in the data segment

Data
Ctors

Dtors

GOT

BSS

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 gp 1135 "‘-4‘,;:4’;

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities
> Integer errors

» Countermeasures
» Conclusion

N\

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 g3 /135

- DistriNet -

Research Group

Format string vulnerabilities

» Format strings are used to specify formatting of
output:

»printf (“%d is %$s\n”, integer,
string); -> “5 1is five”

» Variable number of arguments
» Expects arguments on the stack

» Problem when attack controls the format string:
» printf (input) ;
» shouldbe printf (“%$s”, input); @

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 g4 1135 "‘-é‘,’,}

> Di
R

strilet '

earch Group

Format string vulnerabilities

» Can be used to read
arbitrary values from

the stack
“os Sx gx”

» Will read 1 string and
2 integers from the
stack

FP

=

SP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

tac

Other stack frames

Return address fO

Saved frame pointer fO

Local variable fO
string

Arguments printf:
format string

Return address printf

Saved frame ptr printf

February 22nd, 2010

7,
A
‘!ﬁ‘l

85 /135 "'-;‘,’.,:

’
» D
R

strilet '

earch Group

Format string vulnerabilities

» Can be used to read
arbitrary values from

the stack
“os Sx gx”

» Will read 1 string and
2 integers from the
stack

FP

=

SP

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

tac

Other stack frames

Return address fO

Saved frame pointer fO

Local variable fO
string

Arguments printf:
format string

Return address printf

Saved frame ptr printf

February 22nd, 2010

P,
AN
4 %
l E ;

g6 /135 &

- Distriet -

Format string vulnerabilities

» Format strings can also write data:

» sn Wil write the amount of (normally) printed
characters to a pointer to an integer

» “$200x%n” will write 200 to an integer

» Using %n, an attacker can overwrite arbitrary
memory locations:

» The pointer to the target location can be placed some
where on the stack

» Pop locations with “%x”” until the location is reached
Yves Yﬁnwrlte tOCtn gf J-‘Qegﬁuggl]dtwiitnnt;;e%@ i February 22nd, 2010 g7 1135 %

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities

» Integer errors
= |nteger overflows
= |nteger signedness errors

» Countermeasures
%s @@ n Cl u S i md C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 gg /135 ;"-;',1:

o DistriNet -

Research Group

Integer overflows

» Integer wraps around 0

» Can cause buffer overflows
int main(int argc, char **argv) {
unsigned int a;
char *buf;
a = atol (argv[l]);
buf = (char*) malloc (a+1l);

J

» malloc(0) -> will malloc only 8 bytes 0

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 gg /135

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Code injection attacks
» Buffer overflows
» Format string vulnerabilities

» Integer errors
= Integer overflows
= |nteger signedness errors

» Countermeasures
%s @@ n Cl u S i md C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 90 /135 ;"-;',1:

> DistriNlet -

Research Group

Integer signedness errors

» Value interpreted as both signed and unsigned
int main(int argc, char **argv) {

int a;
char buf[100];
a = atol (argvl[l]);
1f (a < 100)
strncpy (buf, argv([2], a); }

» For a negative a:
» In the condition, a is smaller than 100
» Strncpy expects an unsigned integer: a is now a large

AN
Fy ﬁ V;_

Yves Younan pOS | t|Ve Cﬁwuﬂ‘-}b@%ilities, exploits and countermeasures February 22nd, 2010 91 /135 "‘-;',1:;*'

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Bounds checkers
> Conclusion @)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 92 /135

- DistriNet -

Research Group

Safe languages

» Change the language so that correctness can be
ensured
» Static analysis to prove safety
= More on static analysis at Bart Jacob and Matias Madou's talks

> If it can't be proven safe statically, add runtime checks to
ensure safety (e.g. array unsafe statically -> add bounds
checking)

» Type safety: casts of pointers are limited

» Less programmer pointer control
@)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 93 /135 “-«",’,.?

- DistriNet -

Research Group

Safe languages

» Runtime type-information

» Memory management: no explicit management
= (arbage collection: automatic scheduled deallocation

= Region-based memory management: deallocate regions as
a whole, pointers can only be dereferenced if region is live

» Focus on languages that stay close to C

AN
‘! %)
3 %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 94 /135 “-«",’,.?

- DistriNet -

Research Group

Safe languages

» Cyclone: Jim et al.

» Pointers:
= NULL check before dereference of pointers (*ptr)
= New type of pointer: never-NULL (@ptr)
= No artihmetic on normal (*) & never-NULL (@) pointers

= Arithmetic allowed on special pointer type (?ptr): contains
extra bounds information for bounds check

= Uninitialized pointers can't be used
» Region-based memory management

» Tagged unions: functions can determine type of
rerm@lgUMents;. prevents format.string vulnerabilities., i W

- DistriNet -

Research Group

Safe languages

» CCured: Necula et al.
» Stays as close to C as possible
» Programmer has less control over pointers: static
analysis determines pointer type
= Safe: no casts or arithmetic; only needs NULL check

= Sequenced: only arithmetic; NULL and bounds check

= Dynamic: type can't be determined statically; NULL,
bounds and run-time type check

» Garbage collection: free() is ignored

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 96 /135

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Bounds checkers
> Conclusion @)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 97 /135

- Distriet -
Probabilistic countermeasures

» Based on randomness

» Canary-based approach
» Place random number in memory
» Check random number before performing action
» |f random number changed an overflow has occurred

» Obfuscation of memory addresses
» Address Space Layout Randomization
» Instruction Set Randomization

VAN
V4 ﬁ ®
< %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 98 /135 “-«",’,.?

- Distriet -

Canary-based countermeasures

» StackGuard (SG): Cowan et al.

» Places random number before the return address
when entering function

» Verifies that the random number is unchanged when
returning from the function

» |f changed, an overflow has occurred, terminate
program

VAN
4 ﬁ ®
- %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 99 /135 “-«",’,.?

- DistriNet -

Research Group

Yves Younan

StackGuard (SG)

fO:

call f1

&
<

f1:
ptr = &data;
buffer(]

overflow();
*ptr = value;

FP

::>

tac

Other stack frames

Return address fO

Saved frame pointer fO

Canary

Local variables fO

Arguments f1

Return address f1

Saved frame pointer f1

Canary

data Ii

C and C++: vulnerabilities, exploits and co

SP

e

Pointer

Buffer

e U ST 18
I\ o | * 18
» DistriNet -

Research Group

StackGuard (SG)

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
Canary

Local variables fO

f1:
ptr = &data; Arguments f1
buffer(]
IP FP
* overflow(); ::>

*ptr = value;

data Ii Sp >

Yves Younan C and C++: vulnerabilities, exploits and co

- DistriNet -

Research Group

Canary-based countermeasures

» Propolice (PP): Etoh & Yoda

» Same principle as StackGuard

» Protects against indirect pointer overwriting by
reorganizing the stack frame:

= All arrays are stored before all other data on the stack (i.e.
right next to the random value)

= Qverflows will cause arrays to overwrite other arrays or the
random value

» Part of GCC >=4.1
» ‘Stack Cookies in Visual Studio &)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 102/ 135

- DistriNet -

Research Group

Propolice (PP)

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
) Canary

Local variables fO

e | f1:
= ke Arguments f1
buffer(] £p Return address f1
overflow(); ::> Saved frame pointer f1

*ptr = value; Canary

Buffer

_Idata SP! I— Pointer @

Yves Younan C and C++: vulnerabilities, exploits and co

TEOTUATy ZZTT0, ZUTU TO37T o9

WKLl

P 5 \m Js ﬁi"é* n i

Research Group

Propolice (PP)

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
) Canary

Local variables fO

IP
i Arguments f1
ptr = &data;
buffer(] =5
overflow(); ::>
*ptr = value;
data I\—‘ : !v‘
Yves Younan C and C++: vulnerabilities, exploits and couspm FS uoa.I yrEErgu TO 047 ™ ‘E

> Di
R

strilet '

esearch Group

Chunk1

Chunk?2

Yves Younan

Heap protector (HP)

Size of prev. chunk

Size of chunkl

Checksum

User data

Size of chunkl

Size of chunk2

Checksum

Forward pointer

Backward pointer

Old user data

» Heap protector: Robertson
et al.

» Adds checksum to the chunk
iInformation

» Checksum is XORed with a
global random value

» On allocation checksum is
added

» On free (or other operations)
checksum is calculated,

C and C++: vulnerabilities, exploits and countermezgiQ Red) a n d ng%ed 105/ 135 z"—-;:f;

» DistriNet -

esearch Group

Contrapolice (CP)

Chunk1 Canaryl . .
Size of prev. chunk > ContrapO“Ce: Krennmair

Size of chunkl » Stores a random value before

User data and after the chunk
e » Before exiting from a string
Chunk?2 Canary2 copy operation, the random
Size of chunk1 value before is compared to the

Size of chunk2 random value after
Forward pointer

Backward pointer | > |f they are not the same, an
Old user data overflow has occured

Canary?2 @

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 106/ 135 “'-;',f;

- Distriet -

Problems with canaries

» Random value can leak
» For SG: Indirect Pointer Overwriting

» For PP: overflow from one array to the other (e.g.
array of char overwrites array of pointer)

» For HP, SG, PP: 1 global random value
» CP: different random number per chunk
» CP: no protection against overflow in loops

AN
‘! %)
3 %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 107/ 135 “-«",’,.?

> DistriNlet -

Research Group

Probabilistic countermeasures

» Obfuscation of memory addresses
» Also based on random numbers

» Numbers used to ‘encrypt’ memory locations

» Usually XOR
= 39 XORb=c
= cXORb=2a

,\!’ -.: "s_
Fy ﬁ‘;—

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 108/ 135

- Distriet -
Obfuscation of memory addresses

» PointGuard: Cowan et al.

» Protects all pointers by encrypting them (XOR) with a
random value

Decryption key is stored in a register

Pointer is decrypted when loaded into a register
Pointer is encrypted when loaded into memory
~orces the compiler to do all memory access via

>&eagr%%%r%ypassed if the key or a pointer leaks
» Randomness can be lowered by using partial overwrite

V V V V

AN
‘! %)
3 %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 109/ 135 "‘-#‘,’,}

- Dighitet -

Partial overwrite

» XOR:
> 0x41424344 XOR 0x20304050 = 0x61720314
» However, XOR ‘encrypts’ bitwise
» 0x44 XOR 0x50 = 0x14
» It injected code relatively close:
» 1 byte: 256 possibilities
» 2 bytes: 65536 possibilities

AN
Fy ﬁ V;_

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 110/ 135

- DistriNet -

Research Group

Yves Younan

fO:

call f1

Partial overwrite

&
<

f1:

ptr = &data;
buffer(]

overflow();

*ptr = value;

tac

Other stack frames

Return address fO

Saved frame pointer fO

FP

::>

Data

Other Local variables fO

Arguments f1

Return address f1

Saved frame pointer f1

SP

*

C and C++: vulnerabilities, exploits and countermeasures

Encrypted pointer

Buffer

=" Distrillet -

Research Group

Partial overwrite

tac

f0: Other stack frames

Return address fO
call f1 Saved frame pointer fO
< Data

Other Local variables fO

f1: Arguments f1
ptr = &data;
buffer(] > Return address f1
IP FP :
* overflow(); ::> Saved frame pointer f1
*ptr = value;
SP

*

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

R
» DistriNet -

Research Group

fO:

call f1

f1:
ptr = &data;

= buffer(]

meml=| overflow();

*ptr = value;

Partial overwrite

tac

Other stack frames

Return address fO

Saved frame pointer fO

Data

Other Local variables fO

FP

;

Arguments f1

Saved frame pointer f1

SP

:

Yves Younan C and C++: vulnerabilities, exploits and countermeasures

- Distriet -

Probabilistic countermeasures

» Address space layout randomization: PaX team
» Compiler must generate PIC

» Randomizes the base addresses of the stack, heap,
code and shared memory segments

» Makes it harder for an attacker to know where in
memory his code is located

» Can be bypassed if attackers can print out memory
addresses: possible to derive base address

» Implemented in Windows Vista / Linux >=2.6.12

AN
4 ﬁ ®
- %

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 1141135 “-«",’,.?

- Distriet -
Probabilistic countermeasures

» Randomized instruction sets: Barrantes et al./Kc et
al.
» Encrypts instructions while they are in memory
» Decrypts them when needed for execution

> |f attackers don'’t know the key their code will be
decrypted wrongly, causing invalid code execution

» |If attackers can guess the key, the protection can be
bypassed

» High performance overhead in prototypes: should be
Yves Younan Implem%glggvu’”gabmiea& L.)gm\{\sl grcgntermeasures February 22nd, 2010 115/ 135 %

- Distriet -

Probabilistic countermeasures

» Rely on keeping memory secret

» Programs that have buffer overflows could also
have information leakage

» Example:
» char buffer[100];
» strncpy(buffer, input, 100);
» Printf(“%s”, buffer);

» Strncpy does not NULL terminate (unlike strcpy),
_printf keeps reading until a NULL is found (B)

C and C++: vulnerabilities, exploits and co February 22nd, 2010 116/135 N

Research Group

| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Bounds checkers
> Conclusion @)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 117/ 135 “*-;',1:4’

- Distriet -

Separation and replication of

iInformation

» Replicate valuable control-flow information
» Copy control-flow information to other memory
» Copy back or compare before using

» Separate control-flow information from other data

» \Write control-flow information to other places in
memory

» Prevents overflows from overwriting control flow
information

» These approaches do not rely on randomness 0

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 118/ 135 “-«",’,.?

- Distriet -

Separation of information

» Dnmalloc: Younan et al.
» Does not rely on random numbers

» Protection is added by separating the chunk
Information from the chunk

» Chunk information is stored in separate regions
protected by guard pages

» Chunk is linked to its information through a hash table
» Fast: performance impact vs. dimalloc: -10% to +5%

» Used as the default allocator for Samhein (open
Yves Younan SO u rce |Q1§)+ vulnerabilities, exploits and countermeasures February 22nd, 2010 119/ 135 %

= Dighrillet -

Research Group

Dnmalloc

Low addresses Hashtable
Guard page
Ptr to chunkinfo

Ptr to chunkinfo
Ptr to chunkinfo

Ptr to chunkinfo
Ptr to chunkinfo

Heap Data
Heap Data

Heap Data

Heap Data
Chunkinfo region

Guard page
Management information
Management information

Heap Data

Heap Data

Management information
Management information
Management information

Heap Data

Heap Data

o
£a™\

High addresses BControl data [lRegular data ’gx

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 120/ 135 N4

. Dnsanef .

rch Group

Separation of information

» Dnstack (temporary name): Younan et al.
» Does not rely on random numbers

» Separates the stack into multiple stacks, 2 criteria:
= Risk of data being an attack target (target value)

= Risk of data being used as an attack vector (source value)
* Return addres: target: High; source: Low
* Arrays of characters: target: Low; source: High

» Default: 5 stacks, separated by guard pages

= Stacks can be reduced by using selective bounds
checking: to reduce source risk: ideally 2 stacks

» Fast: max. performance overhead: 2-3% gbusuall ()

Yves Younan C and C++: vulnerabilities, exploits and countermeasures bruary 22nd 2 121/ 135 o4

- Distritlet -

Research Group

"Dnstack’

Structs (no Structures
Array of char array) (with char.

Pointers pointers Array of struct array)
(no char

array) Array of

Arrays structures

(with char
array)

Array of

Structures (no characters

Saved arrays)
registers Alloca()

Integers Floats

Guard page Guard page Guard page Guard page Guard page

> Stacks are at a fixed location from each other

» |t source risk can be reduced: maybe only 2 stacks

» Map stack 1,2 onto stack one
> Map stack 3,4.5 onto stack two t)

Yves Younan and C++'vulnerabilities, exploits and countermeasures February 22nd, 2010 1221135 "‘-4‘,;:4’"

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Bounds checkers
> Conclusion @)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 123/ 135

. Dnsanef .

Research Gro

Paging-based countermeasures

» Non-executable stack: Solar Designer
» Makes stack segment non-executable
» Prevents exploits from storing code on the stack
» Code can still be stored on the heap

» Can be bypassed using a return-into-libc attack

= make the return address point to existing function (e.g.
system) and use the overflow to put arguments on the
stack

» Some programs need an executable stack

» Non-executable stack/heap: PaX team A
YvesYogn Can be (SQif)a\grgraebll s, epr%F]and Co ﬁrFera]surieﬁtO ||bC February 22nd, 2010 1941135 &4

- Distrillet -

Research Group

| ecture overview

» Memory management in C/C++
» Vulnerabilities

» Countermeasures
» Safe languages
» Probabilistic countermeasures
» Separation and replication countermeasures
» Paging-based countermeasures
» Bounds checkers
> Conclusion ®)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 125/ 135

- Distriet -

Bounds checkers

» Ensure arrays and pointers do not access memory
out of bounds through runtime checks

> Slow:

» Bounds checking in C must check all pointer operations,
not just array index accesses (as opposed to Java)

» Usually too slow for production deployment
» Some approaches have compatibility issues

» Two major approaches: add bounds info to pointers,
add bounds info to objects A

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 126/ 135 “-«",’,.?

- DistriNet -

Research Group

Bounds checkers

» Add bounds info to pointers

» Pointer contains
= Current value
= Upper bound
= | ower bound

» Two techniques

= Change pointer representation: fat pointers
» Fat pointers are incompatible with existing code (casting)

= Store extra information somewhere else, look it up
» Problems with existing code: if (global) pointer is
YvesYounanChangedan(jaf:lenLﬁoiIQUetpl ar@%&geasures February 22nd, 2010 127/ 135 %

- DistriNet -

Research Group

Bounds checkers

» Add bounds info to objects

» Pointers remain the same
» Look up bounds information based on pointer’s value

» Check pointer arithmetic:
= |fresult of arithmetic is larger than base object + size ->
overflow detected
= Pointer use also checked to make sure object points to
valid location

» Other lighter-weight approaches

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 128/ 135 "‘-é‘,’,}

- DistriNet -

Research Group

Bounds checkers

» Safe C: Austin et al.
» Safe pointer: value (V), pointer base (B), size (S),
class (C), capability (CP)
» V, B, S used for spatial checks
» C and CP used for temporal checks
= Prevents dangling pointers

= Class: heap, local or global, where is the memory allocated
= Capability: forever, never

» Checks at pointer dereference
= First temp check: is the pointer still valid? %
Yves Younan M Bound@gh@m@nii@,ﬁh@sp@iam@pawﬁhin bounds #evruary22nd, 2010 4597135 &/

- DistriNet -

Research Group

Bounds checkers

» Jones and Kelly
» Austin not compatible with existing code
» Maps object size onto descriptor of object (base, size)

» Pointer dereference/arithmetic
= Check descriptor
= |f out of bounds: error

» Object created in checked code
= Add descriptor

» Pointers can be passed to existing code

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 130/ 135 “-«",’,.?

- DistriNet -

Research Group

Bounds checkers

» CRED: Ruwase and Lam

» Extension of Jones and Kelly

» Problems with pointer arithmetic

= 1) pointer goes out-of-bounds, 2) is not dereferenced, 3)
goes in-bounds again

= Qut-of-bounds arithmetic causes error
= Many programs do this

» Create OOB object when going out-of-bounds
= \When OOB object dereferenced: error

= When pointer arithmetic goes in-bounds again, set to
correct value t)

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 131/ 135 “-«",’,.?

- DishiNet -

Bounds checkers

» PariCheck: Younan et al.

» Bounds are stored as a uniqgue number over a
region of memory

» Object inhabits one or more regions, each region
has the same unique number

» Check pointer arithmetic

» Look up unique number of object that pointer is
pointing to, compare to unique number of the result of
the arithmetic, if different -> overflow

wes vl - @StEr than QJKJ&IIQQNQQMM& checkers: ~5:Q%/ Qyﬁghe@g135 %

o DistriNet -

Research Group

| ecture overview

» Memory management in C/C++

» Vulnerabilities
» Buffer overflows
» Format string vulnerabilities
> Integer errors

» Countermeasures
» Conclusion

AN
Fy ﬁ V;_

Yves Younan C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010 133/ 135

- Distriet -

Embedded and mobile devices

» Vulnerabilities also present and exploitable on
embedded devices

» IPhone LibTIFF vulnerability massively exploited
by to unlock phones

» Almost no countermeasures
» Windows CE6 has stack cookies

» Different priorities: performance is much more
iImportant on embedded devices

> Area of very active research (8)

rabilities, exploits a February 22nd, 2010 1341135 N4

- DistriNet -

Research Group

Conclusion

» Many attacks, countermeasures, counter-
countermeasures, etc. exist

» Search for good and performant countermeasures to
protect C continues

» Best solution: switch to a safe language, if possible

» More information:

» Y. Younan, W. Joosen and F. Piessens. Code injection in C and C++:
A survey of vulnerabilities and Countermeasures

> Y. Younan. Efficient countermeasures for software vulnerabilities due
to memory management errors %

vesygpan |, Erlingssoreowatevel-Boftwarer8eeurity: Attacks ard Befensesss/ 135

