
Yves Younan

DistriNet, Department of Computer Science

Katholieke Universiteit Leuven

Belgium

Yves.Younan@cs.kuleuven.ac.be

C and C++: vulnerabilities, exploits

and countermeasures

mailto:Yves.Younan@cs.kuleuven.ac.be

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 1352

Introduction

C/C++ programs: some vulnerabilities exist which

could allow code injection attacks

Code injection attacks allow an attacker to execute

foreign code with the privileges of the vulnerable

program

Major problem for programs written in C/C++

Focus will be on:

 Illustration of code injection attacks

Countermeasures for these attacks

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 1353

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 1354

Memory management in C/C++

Memory is allocated in multiple ways in C/C++:

 Automatic (local variables in a function)

 Static (global variables)

Dynamic (malloc or new)

Programmer is responsible for

Correct allocation and dealocation in the case of

dynamic memory

 Appropriate use of the allocated memory

 Bounds checks, type checks

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 1355

Memory management in C/C++

Memory management is very error prone

Typical bugs:

Writing past the bounds of the allocated memory

Dangling pointers: pointers to deallocated memory

Double frees: deallocating memory twice

Memory leaks: never deallocating memory

For efficiency reasons, C/C++ compilers don‟t

detect these bugs at run-time:

C standard states behavior of such programs is

undefined

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 1356

Process memory layout

Arguments/Environment

Stack

Unused and

Shared Memory

Heap

Static & Global Data

Program code

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 1357

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Format string vulnerabilities

 Integer errors

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 1358

Code injection attacks

To exploit a vulnerability and execute a code

injection attack, an attacker must:

 Find a bug that can allow an attacker to overwrite

interesting memory locations

 Find such an interesting memory location

Copy target code in binary form into the memory of a

program

 Can be done easily, by giving it as input to the program

Use the vulnerability to modify the location so that the

program will execute the injected code

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 1359

Interesting memory locations

for attackers

Stored code addresses: modified -> code can be

executed when the program loads them into the IP

Return address: address where the execution must

resume when a function ends

Global Offset Table: addresses here are used to

execute dynamically loaded functions

 Virtual function table: addresses are used to know

which method to execute (dynamic binding in C++)

Dtors functions: called when programs exit

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13510

Interesting memory locations

Function pointers: modified -> when called, the

injected code is executed

Data pointers: modified -> indirect pointer

overwrites

 First the pointer is made to point to an interesting

location, when it is dereferenced for writing the

location is overwritten

Attackers can overwrite many locations to perform

an attack

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13511

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Stack-based buffer overflows

 Indirect Pointer Overwriting

 Heap-based buffer overflows and double free

 Overflows in other segments

 Format string vulnerabilities

 Integer errors

Countermeasures

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13512

Buffer overflows: impact

Code red worm: estimated loss world-wide: $ 2.62

billion

Sasser worm: shut down X-ray machines at a

swedish hospital and caused Delta airlines to

cancel several transatlantic flights

Zotob worm: crashed the DHS‟ US-VISIT program

computers, causing long lines at major

international airports

All three worms used stack-based buffer overflows

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13513

Buffer overflows: numbers

NIST national vulnerability database (jan-oct

2008):

 486 buffer overflow vulnerabilities (10% of total

vulnerabilities reported)

 347 of these have a high severity rating

 These buffer overflow vulnerabilities make up 15% of

the vulnerabilities with high severity

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13514

Buffer overflows: what?

Write beyond the bounds of an array

Overwrite information stored behind the array

Arrays can be accessed through an index or

through a pointer to the array

Both can cause an overflow

Java: not vulnerable because it has no pointer

arithmetic and does bounds checking on array

indexing

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13515

Buffer overflows: how?

How do buffer overflows occur?

 By using an unsafe copying function (e.g. strcpy)

 By looping over an array using an index which may be

too high

 Through integer errors

How can they be prevented?

Using copy functions which allow the programmer to

specify the maximum size to copy (e.g. strncpy)

Checking index values

 Better checks on integers

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13516

Buffer overflows: example

void function(char *input) {

char str[80];

strcpy(str, input);

}

int main(int argc, char **argv)

{

function(argv[1]);

}

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13517

Shellcode

Small program in machine code representation

 Injected into the address space of the process

 int main() {

 printf("You win\n");

 exit(0)
 }
 static char shellcode[] =


"\x6a\x09\x83\x04\x24\x01\x68\x77"


"\x69\x6e\x21\x68\x79\x6f\x75\x20"


"\x31\xdb\xb3\x01\x89\xe1\x31\xd2"


"\xb2\x09\x31\xc0\xb0\x04\xcd\x80"
 "\x32\xdb\xb0\x01\xcd\x80";

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13518

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Stack-based buffer overflows

 Indirect Pointer Overwriting

 Heap-based buffer overflows and double free

 Overflows in other segments

 Format string vulnerabilities

 Integer errors

Countermeasures

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13519

Stack-based buffer overflows

Stack is used at run time to manage the use of

functions:

 For every function call, a new record is created

 Contains return address: where execution should resume

when the function is done

 Arguments passed to the function

 Local variables

 If an attacker can overflow a local variable he can

find interesting locations nearby

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13520

Stack-based buffer overflows

Old unix login vulnerability
 int login() {

 char user[8], hash[8], pw[8];

 printf("login:"); gets(user);

 lookup(user,hash);

 printf("password:"); gets(pw);

 if (equal(hash, hashpw(pw)))

 return OK;

 else

 return INVALID;

 }

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13521

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13522

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13523

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13524

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13525

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13526

Stack-based buffer overflows

Attacker can specify a password longer than 8

characters

Will overwrite the hashed password

Attacker enters:

 AAAAAAAABBBBBBBB

Where BBBBBBBB = hashpw(AAAAAAAA)

Login to any user account without knowing the

password

Called a non-control data attack

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13527

Stack-based buffer overflows

login:

char user[8], hash[8], pw[8];

printf(“username:”);

gets(user);

lookup(user,hash);

printf(“password:”);

gets(pw);

if (equal(hash,hashpw(pw)))

return OK;

else

return INVALID;

IP

Other stack frames

Return address login

Saved frame pointer login

hash

pw

user

FP

SP

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13528

Stack-based buffer overflows

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0
SP

FP

IP

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13529

Stack-based buffer overflows

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

Arguments f1
SP

FPIP

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13530

Overwritten return address

Injected code

Stack-based buffer overflows

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

Arguments f1

Return address f1

Saved frame pointer f1

Buffer
SP

FP

IP

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13531

Overwritten return address

Injected code

Stack-based buffer overflows

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

Arguments f1

SP

FP

IP

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13532

Injected code

Stack-based buffer overflows

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0
SP

IP

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13533

Stack-based buffer overflows

Exercises

 From Gera‟s insecure programming page

 http://community.corest.com/~gera/InsecureProgram

ming/

 For the following programs:

 Assume Linux on Intel 32-bit

 Draw the stack layout right after gets() has executed

 Give the input which will make the program print out “you

win!”

http://community.corest.com/~gera/InsecureProgramming/
http://community.corest.com/~gera/InsecureProgramming/

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13534

Stack-based buffer overflows

 int main() {

 int cookie;

 char buf[80];

 printf("b: %x c: %x\n", &buf,

&cookie);

 gets(buf);

 if (cookie == 0x41424344)

 printf("you win!\n");

 }

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13535

Return address

Stack-based buffer overflows

main:

buf[80]

gets()

printf()

Stack

SP

FP

IP

cookie

...

Frame pointer

cookie

buf

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13536

Return address

Stack-based buffer overflows

main:

buf[80]

gets()

printf()

Stack

SP

FP

IP

cookie

...

Frame pointer

ABCD

buf

perl -e 'print "A"x80; print "DCBA"' | ./s1

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13537

Stack-based buffer overflows

 int main() {

 int cookie;

 char buf[80];

 printf("b: %x c: %x\n", &buf,

&cookie);

 gets(buf);

 }

 buf is at location 0xbffffce4 in memory

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13538

Return address

Stack-based buffer overflows

main:

buf[80]

gets()

printf()

Stack

SP

FP

IP

cookie

...

Frame pointer

cookie

buf

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13539

Stack-based buffer overflows

#define RET 0xbffffce4

int main() {
 char buf[93];
 int ret;
 memset(buf, '\x90', 92);
 memcpy(buf, shellcode,
strlen(shellcode));
 *(long *)&buf[88] = RET;
 buf[92] = 0;
 printf(buf);
}

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13540

0xbffffce4

Stack-based buffer overflows

main:

buf[80]

gets()

printf()

Stack

0xbffffce4

FP

IP

cookie

...

0x90909090

0x90909090

Injected code

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13541

Finding inserted code

 Generally (on kernels < 2.6) the stack will start at a static
address

 Finding shell code means running the program with a
fixed set of arguments/fixed environment

 This will result in the same address

 Not very precise, small change can result in different
location of code

 Not mandatory to put shellcode in buffer used to overflow

 Pass as environment variable

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13542

Controlling the environment

Program name

High addr

Low addr

0,0,0,0

Stack start:

0xBFFFFFFF

Env var n

Env var n-1

…

Env var 0

Arg n

Arg n-1

…

Arg 0

Passing shellcode as

environment variable:

Stack start - 4 null bytes

- strlen(program name) -

- null byte (program name)

- strlen(shellcode)

0xBFFFFFFF - 4

- strlen(program name) -

- 1

- strlen(shellcode)

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13543

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Stack-based buffer overflows

 Indirect Pointer Overwriting

 Heap-based buffer overflows and double free

 Overflows in other segments

 Format string vulnerabilities

 Integer errors

Countermeasures

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13544

Indirect Pointer Overwriting

Overwrite a target memory location by overwriting

a data pointer

 An attackers makes the data pointer point to the target

location

When the pointer is dereferenced for writing, the target

location is overwritten

 If the attacker can specify the value of to write, he can

overwrite arbitrary memory locations with arbitrary

values

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13545

Indirect Pointer Overwriting

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0
SP

FP

IP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

data

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13546

Indirect Pointer Overwriting

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Buffer

Pointer

data

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13547

Indirect Pointer Overwriting

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FPIP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Overwritten pointer

data

Injected code

f1:

buffer[]

overflow()
...

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13548

Indirect Pointer Overwriting

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FP

IP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Modified return address

Saved frame pointer f1

Overwritten pointer

data

Injected code

f1:

buffer[]

overflow()
...

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13549

Indirect Pointer Overwriting

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0
SP

FP

IP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

data

Injected code

f1:

buffer[]

overflow()
...

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13550

Indirect Pointer Overwriting

static unsigned int a = 0;

int main(int argc, char **argv) {

 int *b = &a;

 char buf[80];

 printf("buf: %08x\n", &buf);

 gets(buf);

 *b = strtoul(argv[1], 0, 16);

}

buf is at 0xbffff9e4

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13551

Indirect Pointer Overwriting

f1:

buffer[]

overflow()
...

Stack

SP

FP

IP

main:

buf[80]

gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

a

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13552

Indirect Pointer Overwriting

#define RET 0xbffff9e4+88

int main() {

 char buf[84];

 int ret;

 memset(buf, '\x90', 84);

 memcpy(buf, shellcode,

strlen(shellcode));

 *(long *)&buffer[80] = RET;

 printf(buffer);

}

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13553

Indirect Pointer Overwriting

f1:

buffer[]

overflow()
...

Stack

SP

FPIP

main:

buf[80]

gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13554

Indirect Pointer Overwriting

f1:

buffer[]

overflow()
...

Stack

SP

FP
IP

main:

buf[80]

gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13555

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Stack-based buffer overflows

 Indirect Pointer Overwriting

 Heap-based buffer overflows and double free

 Overflows in other segments

 Format string vulnerabilities

 Integer errors

Countermeasures

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13556

Heap-based buffer overflows

Heap contains dynamically allocated memory

Managed via malloc() and free() functions of the

memory allocation library

 A part of heap memory that has been processed by

malloc is called a chunk

No return addresses: attackers must overwrite data

pointers or function pointers

Most memory allocators save their memory

management information in-band

Overflows can overwrite management information

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13557

Used chunk

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

User data

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13558

Free chunk: doubly linked list of free chunks

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13559

Heap management in dlmalloc

Removing a chunk from the doubly linked list of

free chunks:

This is:

#define unlink(P, BK, FD) {

BK = P->bk;

FD = P->fd;

FD->bk = BK;

BK->fd = FD; }

P->fd->bk = P->bk

P->bk->fd = P->fd

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13560

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13561

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13562

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13563

Heap management in dlmalloc

Size of prev. chunk

Size of chunk1

Chunk1

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13564

Heap-based buffer overflows

Size of prev. chunk

Size of chunk1

Chunk1

User data

Size of chunk1

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13565

Heap-based buffer overflows

Size of prev. chunk

Size of chunk1

Chunk1

Injected code

Size of chunk1

Size of chunk2

Chunk2

Old user data

fwd: pointer to target

bck: pointer to inj. code

Return address

call f1

...

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13566

Heap-based buffer overflows

Size of prev. chunk

Size of chunk1

Chunk1

Injected code

Size of chunk1

Size of chunk2

Chunk2

Old user data

fwd: pointer to target

bck: pointer to inj. code

Overwritten return address

After unlink

call f1

...

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13567

Dangling pointer references

Pointers to memory that is no longer allocated

Dereferencing is unchecked in C

Generally leads to crashes

Can be used for code injection attacks when

memory is deallocated twice (double free)

Double frees can be used to change the memory

management information of a chunk

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13568

Double free

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13569

Double free

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13570

Double free

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13571

Double free

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Size of prev. chunk

Size of chunk3

Chunk3

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13572

Double free

Unlink: chunk stays linked because it points to

itself

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13573

Double free

 If unlinked to reallocate: attackers can now write to

the user data part

Size of prev. chunk

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13574

Double free

 It is still linked in the list too, so it can be unlinked

again

Size of prev. chunk

Size of chunk2

Chunk2

Injected code

Forward pointer

Backward pointer

Return address

call f1

...

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13575

Double free

After second unlink

Size of prev. chunk

Size of chunk2

Chunk2

Injected code

Forward pointer

Backward pointer

Overwritten return address

call f1

...

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13576

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Stack-based buffer overflows

 Indirect Pointer Overwriting

 Heap-based buffer overflows and double free

 Overflows in other segments

 Format string vulnerabilities

 Integer errors

Countermeasures

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13577

Overflows in the data/bss

segments

Data segment contains global or static compile-

time initialized data

Bss contains global or static uninitialized data

Overflows in these segments can overwrite:

 Function and data pointers stored in the same

segment

Data in other segments

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13578

Overflows in the data/bss

segments

Data

Ctors

ctors: pointers to functions to

execute at program start

dtors: pointers to functions to

execute at program finish

GOT: global offset table: used

for dynamic linking: pointers to

absolute addresses

Dtors

GOT

BSS

Heap

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13579

Overflow in the data segment

char buf[256]={1};

int main(int argc,char **argv) {

 strcpy(buf,argv[1]);

}

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13580

Overflow in the data segment

Data

Ctors

0x00000000Dtors

GOT

BSS

buf[256]

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13581

Overflow in the data section

 int main (int argc, char **argv) {

 char buffer[476];

 char *execargv[3] = { "./abo7", buffer, NULL
};

 char *env[2] = { shellcode, NULL };
 int ret;
 ret = 0xBFFFFFFF - 4 - strlen (execargv[0]) -
1 - strlen (shellcode);

 memset(buffer, '\x90', 476);
 *(long *)&buffer[472] = ret;
 execve(execargv[0],execargv,env);
 }

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13582

Overflow in the data segment

Data

Ctors

RETDtors

GOT

BSS

buf[256]

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13583

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Format string vulnerabilities

 Integer errors

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13584

Format string vulnerabilities

Format strings are used to specify formatting of

output:

printf(“%d is %s\n”, integer,

string); -> “5 is five”

Variable number of arguments

Expects arguments on the stack

Problem when attack controls the format string:

printf(input);

 should be printf(“%s”, input);

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13585

Format string vulnerabilities

Can be used to read

arbitrary values from

the stack

“%s %x %x”

Will read 1 string and

2 integers from the

stack

Stack

Other stack frames

Arguments printf:

format string

Return address printf

SP

FP
Saved frame ptr printf

Return address f0

Saved frame pointer f0

Local variable f0

string

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13586

Format string vulnerabilities

Can be used to read

arbitrary values from

the stack

“%s %x %x”

Will read 1 string and

2 integers from the

stack

Stack

Other stack frames

Arguments printf:

format string

Return address printf

SP

FP
Saved frame ptr printf

Return address f0

Saved frame pointer f0

Local variable f0

string

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13587

Format string vulnerabilities

Format strings can also write data:

%n will write the amount of (normally) printed

characters to a pointer to an integer

“%200x%n” will write 200 to an integer

Using %n, an attacker can overwrite arbitrary

memory locations:

 The pointer to the target location can be placed some

where on the stack

 Pop locations with “%x” until the location is reached

Write to the location with “%n”

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13588

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Format string vulnerabilities

 Integer errors

 Integer overflows

 Integer signedness errors

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13589

Integer overflows

 Integer wraps around 0

Can cause buffer overflows

malloc(0) -> will malloc only 8 bytes

int main(int argc, char **argv) {

unsigned int a;

char *buf;

a = atol(argv[1]);

buf = (char*) malloc(a+1);

}

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13590

Lecture overview

Memory management in C/C++

Vulnerabilities

Code injection attacks

 Buffer overflows

 Format string vulnerabilities

 Integer errors

 Integer overflows

 Integer signedness errors

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13591

Integer signedness errors

Value interpreted as both signed and unsigned

For a negative a:

 In the condition, a is smaller than 100

 Strncpy expects an unsigned integer: a is now a large

positive number

int main(int argc, char **argv) {

int a;

char buf[100];

a = atol(argv[1]);

if (a < 100)

strncpy(buf, argv[2], a); }

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13592

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

 Safe languages

 Probabilistic countermeasures

Separation and replication countermeasures

Paging-based countermeasures

Bounds checkers

Conclusion

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13593

Safe languages

Change the language so that correctness can be

ensured

 Static analysis to prove safety

 More on static analysis at Bart Jacob and Matias Madou‟s talks

 If it can‟t be proven safe statically, add runtime checks to

ensure safety (e.g. array unsafe statically -> add bounds

checking)

 Type safety: casts of pointers are limited

 Less programmer pointer control

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13594

Safe languages

Runtime type-information

Memory management: no explicit management

 Garbage collection: automatic scheduled deallocation

 Region-based memory management: deallocate regions as

a whole, pointers can only be dereferenced if region is live

Focus on languages that stay close to C

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13595

Safe languages

Cyclone: Jim et al.

 Pointers:

 NULL check before dereference of pointers (*ptr)

 New type of pointer: never-NULL (@ptr)

 No artihmetic on normal (*) & never-NULL (@) pointers

 Arithmetic allowed on special pointer type (?ptr): contains

extra bounds information for bounds check

 Uninitialized pointers can‟t be used

Region-based memory management

 Tagged unions: functions can determine type of

arguments: prevents format string vulnerabilities

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13596

Safe languages

CCured: Necula et al.

 Stays as close to C as possible

 Programmer has less control over pointers: static

analysis determines pointer type

 Safe: no casts or arithmetic; only needs NULL check

 Sequenced: only arithmetic; NULL and bounds check

 Dynamic: type can‟t be determined statically; NULL,

bounds and run-time type check

Garbage collection: free() is ignored

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13597

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

 Safe languages

 Probabilistic countermeasures

Separation and replication countermeasures

Paging-based countermeasures

Bounds checkers

Conclusion

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13598

Probabilistic countermeasures

Based on randomness

Canary-based approach

 Place random number in memory

Check random number before performing action

 If random number changed an overflow has occurred

Obfuscation of memory addresses

Address Space Layout Randomization

 Instruction Set Randomization

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 13599

Canary-based countermeasures

StackGuard (SG): Cowan et al.

 Places random number before the return address

when entering function

 Verifies that the random number is unchanged when

returning from the function

 If changed, an overflow has occurred, terminate

program

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135100

StackGuard (SG)

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Buffer

Pointer

data

Canary

Canary

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135101

Return address f1

Saved frame pointer f1

StackGuard (SG)

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FPIP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Injected code

Pointer

data

Canary

Canary

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135102

Canary-based countermeasures

Propolice (PP): Etoh & Yoda

 Same principle as StackGuard

 Protects against indirect pointer overwriting by

reorganizing the stack frame:

 All arrays are stored before all other data on the stack (i.e.

right next to the random value)

 Overflows will cause arrays to overwrite other arrays or the

random value

Part of GCC >= 4.1

 „Stack Cookies in Visual Studio

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135103

Propolice (PP)

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Buffer

Pointer
data

Canary

Canary

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135104

Return address f1

Saved frame pointer f1

Canary

Propolice (PP)

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Buffer

Pointer
data

Canary

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135105

Heap protector (HP)

Size of prev. chunk

Size of chunk1

Chunk1

User data

Size of chunk1

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Checksum

Checksum

Heap protector: Robertson

et al.

 Adds checksum to the chunk

information

 Checksum is XORed with a

global random value

 On allocation checksum is

added

 On free (or other operations)

checksum is calculated,

XORed, and compared

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135106

Contrapolice (CP)

Size of prev. chunk

Size of chunk1

Chunk1

User data

Size of chunk1

Size of chunk2

Chunk2

Old user data

Forward pointer

Backward pointer

Canary1

Canary1

Canary2

Canary2

Contrapolice: Krennmair

 Stores a random value before

and after the chunk

 Before exiting from a string

copy operation, the random

value before is compared to the

random value after

 If they are not the same, an

overflow has occured

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135107

Problems with canaries

Random value can leak

For SG: Indirect Pointer Overwriting

For PP: overflow from one array to the other (e.g.

array of char overwrites array of pointer)

For HP, SG, PP: 1 global random value

CP: different random number per chunk

CP: no protection against overflow in loops

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135108

Probabilistic countermeasures

Obfuscation of memory addresses

 Also based on random numbers

Numbers used to „encrypt‟ memory locations

Usually XOR

 a XOR b = c

 c XOR b = a

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135109

Obfuscation of memory addresses

PointGuard: Cowan et al.

 Protects all pointers by encrypting them (XOR) with a

random value

Decryption key is stored in a register

 Pointer is decrypted when loaded into a register

 Pointer is encrypted when loaded into memory

 Forces the compiler to do all memory access via

registers
Can be bypassed if the key or a pointer leaks

Randomness can be lowered by using partial overwrite

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135110

Partial overwrite

XOR:

0x41424344 XOR 0x20304050 = 0x61720314

 However, XOR „encrypts‟ bitwise

0x44 XOR 0x50 = 0x14

If injected code relatively close:

1 byte: 256 possibilities

2 bytes: 65536 possibilities

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135111

Partial overwrite

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Other Local variables f0

SP

FP

IP
f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Buffer

Encrypted pointer

Data

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135112

Partial overwrite

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Other Local variables f0

SP

FPIP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1

Saved frame pointer f1

Injected code

Data

Encrypted pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135113

Modified return address

Partial overwrite

f0:

...

call f1
...

f1:

buffer[]

overflow()
...

Stack

Other stack frames

Return address f0

Saved frame pointer f0

Other Local variables f0

SP

FPIP

f1:

buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Saved frame pointer f1

Injected code

Data

Encrypted pointer

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135114

Probabilistic countermeasures

Address space layout randomization: PaX team

Compiler must generate PIC

Randomizes the base addresses of the stack, heap,

code and shared memory segments

Makes it harder for an attacker to know where in

memory his code is located

Can be bypassed if attackers can print out memory

addresses: possible to derive base address

 Implemented in Windows Vista / Linux >= 2.6.12

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135115

Probabilistic countermeasures

Randomized instruction sets: Barrantes et al./Kc et

al.

 Encrypts instructions while they are in memory

Decrypts them when needed for execution

 If attackers don‟t know the key their code will be

decrypted wrongly, causing invalid code execution

 If attackers can guess the key, the protection can be

bypassed

High performance overhead in prototypes: should be

implemented in hardware

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135116

Probabilistic countermeasures

Rely on keeping memory secret

Programs that have buffer overflows could also

have information leakage

Example:

 char buffer[100];

 strncpy(buffer, input, 100);

 Printf(“%s”, buffer);

Strncpy does not NULL terminate (unlike strcpy),

printf keeps reading until a NULL is found

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135117

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

 Safe languages

 Probabilistic countermeasures

Separation and replication countermeasures

Paging-based countermeasures

Bounds checkers

Conclusion

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135118

Separation and replication of

information

Replicate valuable control-flow information

Copy control-flow information to other memory

Copy back or compare before using

Separate control-flow information from other data

Write control-flow information to other places in

memory

 Prevents overflows from overwriting control flow

information

These approaches do not rely on randomness

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135119

Separation of information

Dnmalloc: Younan et al.

Does not rely on random numbers

 Protection is added by separating the chunk

information from the chunk

Chunk information is stored in separate regions

protected by guard pages

Chunk is linked to its information through a hash table

 Fast: performance impact vs. dlmalloc: -10% to +5%

Used as the default allocator for Samhein (open

source IDS)

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135120

Dnmalloc

Control data Regular data

Management information

Low addresses

High addresses

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Management information

Management information

Management information

Chunkinfo region

Guard page

Ptr to chunkinfo

Ptr to chunkinfo

Ptr to chunkinfo

Ptr to chunkinfo

Guard page

Hashtable

Ptr to chunkinfo

Management information

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135121

Separation of information

Dnstack (temporary name): Younan et al.

Does not rely on random numbers

 Separates the stack into multiple stacks, 2 criteria:

 Risk of data being an attack target (target value)

 Risk of data being used as an attack vector (source value)

• Return addres: target: High; source: Low

• Arrays of characters: target: Low; source: High

Default: 5 stacks, separated by guard pages

 Stacks can be reduced by using selective bounds

checking: to reduce source risk: ideally 2 stacks

 Fast: max. performance overhead: 2-3% (usually 0)

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135122

“Dnstack”

Stacks are at a fixed location from each other

 If source risk can be reduced: maybe only 2 stacks

Map stack 1,2 onto stack one

Map stack 3,4,5 onto stack two

Array of

characters

Guard page

Structures

(with char.

array)

Array of

structures

(with char

array)

Guard page

Structs (no

char array)

Array of struct

(no char

array)

Arrays

Alloca()

Floats

Guard page

Array of

pointers

Structures (no

arrays)

Integers

Guard page

Pointers

Saved

registers

Guard page

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135123

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

 Safe languages

 Probabilistic countermeasures

Separation and replication countermeasures

Paging-based countermeasures

Bounds checkers

Conclusion

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135124

Paging-based countermeasures

Non-executable stack: Solar Designer

Makes stack segment non-executable

 Prevents exploits from storing code on the stack

Code can still be stored on the heap

Can be bypassed using a return-into-libc attack

 make the return address point to existing function (e.g.

system) and use the overflow to put arguments on the

stack

 Some programs need an executable stack

Non-executable stack/heap: PaX team

Can be bypassed with return-into-libc

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135125

Lecture overview

Memory management in C/C++

Vulnerabilities

Countermeasures

 Safe languages

 Probabilistic countermeasures

Separation and replication countermeasures

Paging-based countermeasures

Bounds checkers

Conclusion

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135126

Bounds checkers

Ensure arrays and pointers do not access memory

out of bounds through runtime checks

Slow:

 Bounds checking in C must check all pointer operations,

not just array index accesses (as opposed to Java)

Usually too slow for production deployment

Some approaches have compatibility issues

Two major approaches: add bounds info to pointers,

add bounds info to objects

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135127

Bounds checkers

Add bounds info to pointers

 Pointer contains

 Current value

 Upper bound

 Lower bound

 Two techniques

 Change pointer representation: fat pointers

• Fat pointers are incompatible with existing code (casting)

 Store extra information somewhere else, look it up

 Problems with existing code: if (global) pointer is

changed, info is out of sync

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135128

Bounds checkers

Add bounds info to objects

 Pointers remain the same

 Look up bounds information based on pointer‟s value

Check pointer arithmetic:

 If result of arithmetic is larger than base object + size ->

overflow detected

 Pointer use also checked to make sure object points to

valid location

Other lighter-weight approaches

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135129

Bounds checkers

Safe C: Austin et al.

 Safe pointer: value (V), pointer base (B), size (S),

class (C), capability (CP)

 V, B, S used for spatial checks

C and CP used for temporal checks

 Prevents dangling pointers

 Class: heap, local or global, where is the memory allocated

 Capability: forever, never

Checks at pointer dereference

 First temp check: is the pointer still valid?

 Bounds check: is the pointer within bounds?

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135130

Bounds checkers

Jones and Kelly

 Austin not compatible with existing code

Maps object size onto descriptor of object (base, size)

 Pointer dereference/arithmetic

 Check descriptor

 If out of bounds: error

Object created in checked code

 Add descriptor

 Pointers can be passed to existing code

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135131

Bounds checkers

CRED: Ruwase and Lam

 Extension of Jones and Kelly

 Problems with pointer arithmetic

 1) pointer goes out-of-bounds, 2) is not dereferenced, 3)

goes in-bounds again

 Out-of-bounds arithmetic causes error

 Many programs do this

Create OOB object when going out-of-bounds

 When OOB object dereferenced: error

 When pointer arithmetic goes in-bounds again, set to

correct value

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135132

Bounds checkers

PariCheck: Younan et al.

Bounds are stored as a unique number over a

region of memory

Object inhabits one or more regions, each region

has the same unique number

Check pointer arithmetic

 Look up unique number of object that pointer is

pointing to, compare to unique number of the result of

the arithmetic, if different -> overflow

 Faster than existing bounds checkers: ~50% overhead

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135133

Lecture overview

Memory management in C/C++

Vulnerabilities

 Buffer overflows

 Format string vulnerabilities

 Integer errors

Countermeasures

Conclusion

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135134

Embedded and mobile devices

Vulnerabilities also present and exploitable on

embedded devices

 iPhone LibTIFF vulnerability massively exploited

by to unlock phones

Almost no countermeasures

Windows CE6 has stack cookies

Different priorities: performance is much more

important on embedded devices

Area of very active research

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 135135

Conclusion

Many attacks, countermeasures, counter-

countermeasures, etc. exist

Search for good and performant countermeasures to

protect C continues

Best solution: switch to a safe language, if possible

More information:
 Y. Younan, W. Joosen and F. Piessens. Code injection in C and C++:

A survey of vulnerabilities and Countermeasures

 Y. Younan. Efficient countermeasures for software vulnerabilities due

to memory management errors

 U. Erlingsson. Low-level Software Security: Attacks and Defenses

